Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.16.580725

ABSTRACT

Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence SARS-CoV-2 infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of COVID-19 patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 over-expression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Our study contributes to understanding the association between PLSCR1 variants and severe COVID-19 cases reported in a recent GWAS.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.24.505169

ABSTRACT

Human monoclonal antibodies from convalescent individuals that target the SARS-CoV-2 spike protein have been deployed as therapeutics against SARS-CoV-2. However, nearly all of these antibodies have been rendered obsolete by SARS-CoV-2 variants that evolved to resist similar, naturally occurring antibodies. Here, we describe the development of human monoclonal antibodies that bind the ACE2 receptor rather than the viral spike protein. These antibodies block infection by all ACE2 binding sarbecoviruses, including emergent SARS-CoV-2 variants. Structural and biochemical analyses revealed that the antibodies target an ACE2 epitope that engages SARS-CoV-2 spike. Importantly, the antibodies do not inhibit ACE2 enzymatic activity, nor do they induce ACE depletion from cell surfaces. The antibodies exhibit favorable pharmacology and protect human ACE2 knock-in mice against SARS-CoV-2 infection. Such antibodies should be useful prophylactic and treatment agents against any current and future SARS-CoV-2 variants, as well as ACE2-binding sarbecoviruses that might emerge as future pandemic threats


Subject(s)
COVID-19 , Heart Block
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.09.334128

ABSTRACT

SUMMARY Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection. TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes. TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.


Subject(s)
Flavivirus Infections
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.326462

ABSTRACT

The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTSGenome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors. Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles. Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others. TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.


Subject(s)
COVID-19 , Respiratory Tract Infections
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.11.291716

ABSTRACT

The ongoing SARS-CoV-2 pandemic has devastated the global economy and claimed nearly one million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen four related coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43 and SARS-CoV-2) at two physiologically relevant temperatures (33 {degrees}C and 37 {degrees}C), allowing us to probe this interactome at a much higher resolution relative to genome scale studies. This approach yielded several new insights, including unexpected virus and temperature specific differences in Rab GTPase requirements and GPI anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating COVID-19, and help prepare for future coronavirus outbreaks. HIGHLIGHTSFocused CRISPR screens targeting host factors in the SARS-CoV-2 interactome were performed for SARS-CoV-2, HCoV-229E, HCoV-NL63, and HCoV-OC43 coronaviruses. Focused interactome CRISPR screens achieve higher resolution compared to genome-wide screens, leading to the identification of critical factors missed by the latter. Parallel CRISPR screens against multiple coronaviruses uncover host factors and pathways with pan-coronavirus and virus-specific functional roles. The number of host proteins that interact with a viral bait protein is not proportional to the number of functional interactors. Novel SARS-CoV-2 host factors are expressed in relevant cell types in the human airway.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.05.979260

ABSTRACT

Zoonotic coronaviruses (CoVs) are significant threats to global health, as exemplified by the recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Host immune responses to CoV are complex and regulated in part through antiviral interferons. However, the interferon-stimulated gene products that inhibit CoV are not well characterized2. Here, we show that interferon-inducible lymphocyte antigen 6 complex, locus E (LY6E) potently restricts cellular infection by multiple CoVs, including SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in hematopoietic cells were highly susceptible to murine CoV infection. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic and splenic immune cells and reduction in global antiviral gene pathways. Accordingly, we found that Ly6e directly protects primary B cells and dendritic cells from murine CoV infection. Our results demonstrate that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo, knowledge that could help inform strategies to combat infection by emerging CoV.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Infections
SELECTION OF CITATIONS
SEARCH DETAIL